Causal Inference in Evidence-Based Policy. A tale of

three monsters and how to defeat them

Alexander Gebharter  Christian J. Feldbacher-Escamilla

Autumn 2020



Project Information

Talk(s):

® Gebharter, Alexander and Feldbacher-Escamilla, Christian J. (2020-10-02/2020-10-02).
Causal Inference in Evidence-Based Policy. A tale of three monsters and how to defeat
them. Public Lecture. Presentation (invited). Fellowship Lecture. IMTO University: Insti-
tute of Philosophy.

Project(s):

® DFG funded research unit Inductive Metaphysics (FOR 2495); subproject: Creative Abduc-
tive Inference and its Role for Inductive Metaphysics in Comparison to Other Metaphysical
Methods.

Causal Inference in Evidence-Based Policy 1/27



Introduction

A few things we expect from a good policy:
® improve the overall situation

® no or little undesired side effects

high efficacy

® cost/resource efficiency

public support

Question: How can we predict the efficacy of a policy?

Example: Do face masks reduce spread of COVID-197
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Introduction

Two approaches to policy making:

Thinking Vs, Evidence
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Evidence, Inference, and P-Kong

Evidence, Inference, and P-Kong

observe predict

4

The orthodox view:
Evidence:

® Randomized control trials (RCTs)
® Meta studies
Inference (prediction):

® |nduction
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Evidence, Inference, and P-Kong

Evidence, Inference, and P-Kong

Randomized control trial (RCT):

® Random assignment of subjects into two groups:
® Test group
® Control group

® Enforce the policy (P) in the test group
® Compare the outcome (O) in the two groups
Upshot:

® |f successful, P turns out to be an effective means to achieve O, because the
RCT establishes P as a cause for O.

® We need causation to make this inference; mere correlation is not enough.
Explanation:

® Proper randomization guarantees that all the causal influences on subjects in
the two groups of factors different from P are equal.

® Hence, any difference in O in the two groups must be due to P.
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Evidence, Inference, and P-Kong

Evidence, Inference, and P-Kong

An Example: RCT to test a new “back to work” programme in a particular
city (cf. Haynes et al. 2010, p. 9)

INTERVENTION ’
% *q

N

{ w*

Population is splitinto 2 Outcomes for both
groups by random lot groups are measured

CONTROL

' = looking for work = found work

Randomization is key element: We can assume that the differences in the results

are not due to differences between the groups, rather due to the intervention.
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Evidence, Inference, and P-Kong

Evidence, Inference, and P-Kong

The orthodox view:
Evidence:
® Randomized control trials (RCTs)

Inference (prediction):

® |nduction
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Evidence, Inference, and P-Kong

Evidence, Inference, and P-Kong

Scientific Inference:

We can differentiate between three forms of scientific inference:

¢ Deduction ... truth-preserving, explicative

¢ Induction ... ampliative, but theoretically conservative

¢ Abduction ... ampliative, but also theoretically innovative
Examples:

® We can deduce the Pythagorean theorem from elementary geometrical
facts.

® We inductively infer that all swans are white based on our past obser-
vations of swans.

® We can abductively infer that it is gravitational influence of the Moon
which causes the tides.
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Evidence, Inference, and P-Kong

Evidence, Inference, and P-Kong

Induction:

® An inference method that generalizes n observations that policy P
worked to P also working for case n+ 1.

General shema:

Policy P worked in city 1.

Policy P worked in city n.

Policy P will work in city n+ 1.

Particularly Karl Popper stressed: Induction is prone to error.
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Evidence, Inference, and P-Kong

Evidence, Inference, and P-Kong

An Example:

X X X X X X

(R (N (R (R (N (R
So, given P worked in case 1,...,n, does NOT provide any guarantee that
P works also for all cases/for case n+ 1.

Popper: We can only infer (given this data by deduction):
P works NOT in all cases.
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Evidence, Inference, and P-Kong

Evidence, Inference, and P-Kong

'4

Cartwright & Hardie (C&H): The orthodox view is threatened by Popper
Kong (P-Kong).
e The RCT only shows that P worked in city 1 (with a specific causal
profile).
® P might not work in city 2 (with a different causal profile)
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Cartwright & Hardie on Defeating P-Kong

The orthodox view:

Evidence:

® Randomized control trials (RCTs)
Inference (prediction):

® |nduction < Culprit according to C&H
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Cartwright & Hardie on Defeating P-Kong

Cartwright & Hardie on Defeating P-Kong

C&H: Policies are like a special ingredient in a cake; it only works if the
other ingredients (support factors F) are right.
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Cartwright & Hardie on Defeating P-Kong

Cartwright & Hardie on Defeating P-Kong

C&H: Replace induction by deduction (an argument where the truth of the con-
clusion is necessitated by the premises):

General shema:
P worked in city 1.

The same support factors for P in city 1 are also present in city 2.
P plays the same causal role in city 1 as it played in city 2.

P will work in city 2.

Upshot: We also have to think about support factors and causal roles in city 2.
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New Monsters: Skylla & Charybdis

Now there are 2 possibilities:
e We fully know P's support factors and causal profile in city 2.

® We do not fully know P's support factors and causal profile in city 2.
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New Monsters: Skylla & Charybdis

Case 1: We fully know P'’s support factors and causal profile in city 2.

This means:
® We know city 2's causal cake, and A

® we know whether all the relevant ingredients V
are present in city 2.

Skylla: City 1's causal cake (evidence) becomes irrelevant for inferring P's
efficacy in city 2. = Undermines whole idea behind evidence-based policy!
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New Monsters: Skylla & Charybdis

Case 2: We do not fully know P’s support factors and causal profile in city
2.

This means: A
® We do not know city 2's causal cake, or A
¢ we do not know whether all the relevant in- Vv
gredients are present in city 2.
Charybdis: P’s efficacy in city 2 can only be inferred on the basis of city
1's causal cake (evidence) inductively. = Opens the gates for P-Kong!
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New Monsters: Skylla & Charybdis

Summarizing: C&H'’s deductive account attracts

® Skylla if we possess all the information to infer P’s efficacy in city 2,
or

¢ Charybdis (and, thus, P-Kong) otherwise.

In any case, city 2 will be a mess!
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Causal Inference to the Rescue

Causal Inference to the Rescue

How can we chase away all three monsters?

Proposal:
® Do not focus so much on how an efficacious policy in city 1 can be copied to
city 2.

® Rather, try to learn the overarching causal structure responsible for the suc-
cess/failure of P in different cities 1.1 — 1.n.

So the inference pattern we want is not:
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Causal Inference to the Rescue

Causal Inference to the Rescue

We proceed in 4 steps:

® Infer the overarching causal structure S best explaining all the evidence
in cities 1.1-1.n.

e Test and improve S.
® QObserve as many of S's factors F; in city 2 as possible.

® Use these observed factors together with S to predict whether and to
what extent P will be efficacious in city 2.

Note:
® Steps 1 (and 2) involve abductive inference and require creativity.

S allows for novel predictions and can be tested independently.

The more factors S involves and the better it is confirmed, the more
reliably it is able to predict P’s efficacy in city 2.

Thus: By expanding and confirming S, we increase the likelihood of
P's efficacy in city 2.
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Causal Inference to the Rescue

Causal Inference to the Rescue

Our diagnosis fits into a more general pattern as outlined by the champion
of the probabilistic approach to artificial intelligence.

JUDEA PEARL
WINNER OF THE TURING AWARD
AND DANA MACKENZIE

THE
BOOK OF
WHY

o - ——

THE NEW SCIENCE
OF CAUSE AND EFFECT

The “Causal Revolution” in Al: We no longer aim at describing WHAT s

the case, but also: WHY it is the case.
“[R]eturning the Causal Revolution to its womb in artificial intelligence, | aim
to describe to you how robots can be constructed that learn to communicate
in our mother tongue—the language of cause and effect.” (Pearl 2018)
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Causal Inference to the Rescue

The Causal Revolution in Al:

Orthodox Statis- RCTs Causal Inference
tical Analysis

. = " . =
correlation-centred study of “provi- full-blown study of
observational sional causality” causation
studies

Our investigation of C&H: causal inference is also key for Al-based or Al-
assisted policy making.
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Conclusion

Summary

Our investigation shows:

e Simple inductive and deductive reasoning does not suffice for good
policy.

® We need more powerful tools from Al (esp. causal modeling) in order
to:

® Form causal hypotheses on the basis of observational & experimental
data.

® Generate predictions about what would happen if factors were distributed
such and such that form the basis for testing causal hypothesis.

® Can generate predictions about what would happen under hypothetically
possible policy interventions in different causal contexts.
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