Causal Inference in Evidence-Based Policy. A tale of three monsters and how to defeat them

Alexander Gebharter Christian J. Feldbacher-Escamilla

Autumn 2020

Project Information

Talk(s):

Gebharter, Alexander and Feldbacher-Escamilla, Christian J. (2020-10-02/2020-10-02).
Causal Inference in Evidence-Based Policy. A tale of three monsters and how to defeat them. Public Lecture. Presentation (invited). Fellowship Lecture. IMTO University: Institute of Philosophy.

Project(s):

DFG funded research unit Inductive Metaphysics (FOR 2495); subproject: Creative Abductive Inference and its Role for Inductive Metaphysics in Comparison to Other Metaphysical Methods.

Introduction

A few things we expect from a good policy:

- improve the overall situation
- no or little undesired side effects
- high efficacy
- cost/resource efficiency
- public support

Question: How can we predict the efficacy of a policy?

Example: Do face masks reduce spread of COVID-19?

Introduction

Two approaches to policy making:

Thinking

VS.

Evidence

Introduction

Contents

- Evidence, Inference, and P-Kong
- Cartwright & Hardie on Defeating P-Kong
- 3 New Monsters: Skylla & Charybdis
- Causal Inference to the Rescue

The orthodox view:

Evidence:

- Randomized control trials (RCTs)
- Meta studies

Inference (prediction):

Induction

Randomized control trial (RCT):

- Random assignment of subjects into two groups:
 - Test group
 - Control group
- *Enforce* the policy (*P*) in the test group
- Compare the outcome (O) in the two groups

Upshot:

- If successful, *P* turns out to be an *effective means* to achieve *O*, because the RCT establishes *P* as a *cause* for *O*.
- We need causation to make this inference; mere correlation is not enough.

Explanation:

- Proper randomization guarantees that all the causal influences on subjects in the two groups of factors different from P are equal.
- Hence, any difference in O in the two groups must be due to P.

An Example: RCT to test a new "back to work" programme in a particular city (cf. Haynes et al. 2010, p. 9)

Randomization is key element: We can assume that the differences in the results are not due to differences between the groups, rather due to the intervention.

The orthodox view:

Evidence:

Randomized control trials (RCTs)

Inference (prediction):

Induction

Scientific Inference:

We can differentiate between three forms of scientific inference:

- **Deduction** ... truth-preserving, explicative
 - Induction ... ampliative, but theoretically conservative
- Abduction ... ampliative, but also theoretically innovative

Examples:

- We can deduce the Pythagorean theorem from elementary geometrical facts.
- We inductively infer that all swans are white based on our past observations of swans.
- We can abductively infer that it is gravitational influence of the Moon which causes the tides.

Induction:

• An inference method that generalizes n observations that policy P worked to P also working for case n+1.

General shema:

```
Policy P worked in city 1. :
```

Policy P worked in city n.

Policy *P* will work in city n + 1.

Particularly Karl Popper stressed: Induction is prone to error.

An Example:

So, given P worked in case $1, \ldots, n$, does NOT provide any guarantee that P works also for all cases/for case n + 1.

Popper: We can only infer (given this data by deduction):

P works NOT in all cases.

Cartwright & Hardie (C&H): The orthodox view is threatened by Popper Kong (P-Kong).

- The RCT only shows that P worked in city 1 (with a specific causal profile).
- P might not work in city 2 (with a different causal profile)

The orthodox view:

Evidence:

Randomized control trials (RCTs)

Inference (prediction):

Induction ← Culprit according to C&H

C&H: Policies are like a special ingredient in a **cake**; it only works if the other ingredients (**support factors** *F*) are right.

C&H: Replace induction by **deduction** (an argument where the truth of the conclusion is necessitated by the premises):

General shema:

P worked in city 1.

The same *support factors* for P in city 1 are also present in city 2.

P plays the same causal role in city 1 as it played in city 2.

P will work in city 2.

Upshot: We also have to think about support factors and causal roles in city 2.

New Monsters: Skylla & Charybdis

Now there are 2 possibilities:

- We fully know P's support factors and causal profile in city 2.
- We do not fully know P's support factors and causal profile in city 2.

Case 1: We fully know *P*'s support factors and causal profile in city 2.

This means:

- We know city 2's causal cake, and
- we know whether all the relevant ingredients are present in city 2.

Skylla: City 1's causal cake (evidence) becomes irrelevant for inferring P's efficacy in city 2. \Rightarrow Undermines whole idea behind evidence-based policy!

Case 2: We do not fully know *P*'s support factors and causal profile in city 2.

This means:

- We do not know city 2's causal cake, or
- we do not know whether all the relevant ingredients are present in city 2.

Charybdis: P's efficacy in city 2 can only be inferred on the basis of city 1's causal cake (evidence) inductively. \Rightarrow Opens the gates for P-Kong!

Summarizing: C&H's deductive account attracts

- Skylla if we possess all the information to infer P's efficacy in city 2, or
- Charybdis (and, thus, P-Kong) otherwise.

In any case, city 2 will be a mess!

How can we chase away all three monsters?

Proposal:

- Do not focus so much on how an efficacious policy in city 1 can be copied to city 2.
- Rather, try to learn the overarching causal structure responsible for the success/failure of P in different cities 1.1 1.n.

So the inference pattern we want is not:

We proceed in 4 steps:

- Infer the overarching causal structure *S* best explaining *all* the evidence in cities 1.1-1.*n*.
- Test and improve S.
- Observe as many of S's factors F_i in city 2 as possible.
- Use these observed factors together with S to predict whether and to what extent P will be efficacious in city 2.

Note:

- Steps 1 (and 2) involve abductive inference and require creativity.
- S allows for novel predictions and can be tested independently.
- The more factors S involves and the better it is confirmed, the more reliably it is able to predict P's efficacy in city 2.
- Thus: By expanding and confirming S, we increase the likelihood of P's efficacy in city 2.

Our diagnosis fits into a more general pattern as outlined by the champion of the probabilistic approach to artificial intelligence.

The "Causal Revolution" in AI: We no longer aim at describing WHAT is the case, but also: WHY it is the case.

"[R]eturning the Causal Revolution to its womb in artificial intelligence, I aim to describe to you how robots can be constructed that learn to communicate in our mother tongue—the language of cause and effect." (Pearl 2018)

RCTs

Causal Inference to the Rescue

The Causal Revolution in Al:

Orthodox Statis-

studies

Our investigation of C&H: causal inference is also key for Al-based or Alassisted policy making.

Causal Inference

Summary

Our investigation shows:

- Simple inductive and deductive reasoning does not suffice for good policy.
- We need more powerful tools from AI (esp. causal modeling) in order to:
 - Form causal hypotheses on the basis of observational & experimental data.
 - Generate predictions about what would happen if factors were distributed such and such that form the basis for testing causal hypothesis.
 - Can generate predictions about what would happen under hypothetically possible policy interventions in different causal contexts.

Selected References I

- Cartwright, Nancy and Hardie, Jeremy (2012). Evidence-Based Policy: A Practical Guide to Doing It Better. Oxford: Oxford University Press.
- Haynes, Laura, Service, Owain, Goldacre, Ben, and Torgerson, David (2012). "Test, Learn, Adapt: Developing Public Policy with Randomised Controlled Trials". In: Cabinet Office Behavioural Insights Team. DOI: 10.2139/ssrn.2131581.
- Pearl, Judea and Mackenzie, Dana (2018). The Book of Why. The new science of cause and effect. New York: Basic Books.